
STRICT_VARIANT
A	simpler	variant	in	C++

Chris	Beck
https://github.com/cbeck88/strict_variant

What is a variant?
•A variant is a heterogenous container.
• std::vector<T>

many objects of one type
• std::variant<T, U, V>

one object of any of T, U, or V
•AKA “tagged-union”, “typesafe union”

What is a union?
struct bar { // Size is sum of sizes,
short a; // plus padding for alignment
float b;
double c;

};

union foo { // Size is max of sizes,
short a; // alignment is max of alignments
float b;
double c;

};

What is a union?
struct bar { // Size is sum of sizes,
short a; // plus padding for alignment
float b;
double c;

};

union foo { // Size is max of sizes,
short a; // alignment is max of alignments
float b;
double c;

};

union foo {
short a;
float b;
double c;

};

int main() {
foo f;
f.a = 5;
f.a += 7;
f.b = 5;
f.b += .5f;

}

Storing to union may change the active member.
Reading inactive member may lead to

implementation-defined or undefined behavior!

Why would you use this?
•Need to store several types of objects in a
collection, but no natural inheritance relation.
•Using an array of unions, store objects
contiguously, with very little memory wasted.
•Low-level signals / event objects
•Messages matching various schema

struct SDL_KeyboardEvent {
Uint32 type; // SDL_KEYDOWN or SDL_KEYUP
Uint8 state; // SDL_PRESSED or SDL_RELEASED
SDL_Keysym keysym; // Represents the key that was pressed

};

struct SDL_MouseMotionEvent {
Uint32 type; // SDL_MOUSEMOTION
Uint32 state; // bitmask of the current button state
Sint32 x;
Sint32 y;

};

union SDL_Event {
SDL_KeyboardEvent key;
SDL_MouseMotionEvent motion;
...

};

Why would you use this?
•A variant is a type-safe alternative to a union

•Prevents you from using inactive members

•Ensures that destructors are called when the
active member changes – crucial for C++!

void print_variant(boost::variant<int, float, double> v) {
if (const int * i = boost::get<int>(&v)) {
std::cout << *i;

} else if (const float * f = boost::get<float>(&v) {
std::cout << *f;

} else if (const double * d = boost::get<double>(&v) {
std::cout << *d;

} else {
assert(false);

}
}

Query the active member using get:

void print_variant(boost::variant<int, float, double> v) {
if (const int * i = boost::get<int>(&v)) {
std::cout << *i;

} else if (const float * f = boost::get<float>(&v) {
std::cout << *f;

} else if (const double * d = boost::get<double>(&v) {
std::cout << *d;

} else {
assert(false);

}
}

Query the active member using get:

boost::get returns null if requested type doesn’t
match run-time type.

void print_double(double d) {
std::cout << d;

}

void print_variant(boost::variant<int, float, double> v) {
boost::apply_visitor(print_double, v);

}

Better, use a visitor:

void print_double(double d) {
std::cout << d;

}

void print_variant(boost::variant<int, float, double> v) {
boost::apply_visitor(print_double, v);

}

Better, use a visitor:

This only works because int, float can be
promoted to double as part of overload resolution.

void print_variant(boost::variant<int, float, double> v) {
boost::apply_visitor([](auto val) {

std::cout << val;
}, v);

}

Using a lambda as a visitor (C++14):

void print_variant(boost::variant<int, float, double> v) {
boost::apply_visitor([](auto val) {

std::cout << val;
}, v);

}

Using a lambda as a visitor (C++14):

No promotion here!
More generally, use templates in the visitor object.

struct mini_xml;

using mini_xml_node =
boost::variant<boost::recursive_wrapper<mini_xml>,

std::string>;

struct mini_xml {
std::string name;
std::vector<mini_xml_node> children;

};

Recursive Data Structures (XML)

struct mini_xml;

using mini_xml_node =
boost::variant<boost::recursive_wrapper<mini_xml>,

std::string>;

struct mini_xml {
std::string name;
std::vector<mini_xml_node> children;

};

Recursive Data Structures (XML)

recursive_wrapper<T> is “syntactic sugar”
It works like std::unique_ptr<T>

But when visiting, or using get, can pretend it is T.

enum Message {
Quit,
ChangeColor(i32, i32, i32),
Move { x: i32, y: i32 },
Write(String),

}

fn process_message(msg: Message) {
match msg {
Message::Quit => quit(),
Message::ChangeColor(r, g, b) => change_color(r, g, b),
Message::Move { x, y } => move_cursor(x, y),
Message::Write(s) => println!("{}", s);

}
}

Pattern Matching (Rust):

using Message = boost::variant<Quit,
ChangeColor,
Move,
Write>;

void process_message(const Message & msg) {
boost::apply_visitor(
overload([](Quit) { quit(); },

[](ChangeColor c) { change_color(c.r, c.g, c.b); }
[](Move m) { move_cursor(m.x, m.y); }
[](Write w) { std::cout << w.s << std::endl; }),

, msg);
}

Pattern Matching (C++):

Existing Implementations

•boost::variant
•std::variant (C++17)
•strict_variant (this talk)
•and others...

Surprisingly, many significant design
differences and tradeoffs!

Problem: Exception Safety

A1

Problem: Exception Safety

A

B

1

Problem: Exception Safety
How to handle throwing, type-changing assignment.
• ~A()
• Now B(...) throws...
• Now what? A is already gone, and have no BB

1

Problem: Exception Safety
How to handle throwing, type-changing assignment.
• ~A()
• Now B(...) throws...
• Now what? A is already gone, and have no BB

1

Problem: Exception Safety
How to handle throwing, type-changing assignment.
• ~A()
• Now B(...) throws...
• Now what? A is already gone, and have no B

1

Problem: Exception Safety
How to handle throwing, type-changing assignment.
• ~A()
• Now B(...) throws...
• Now what? A is already gone, and have no B

1

Solution: Double Storage

A1

Solution: Double Storage

A

B

1

Solution: Double Storage
• If B(...) throws, still have A
• ~A()
• When C comes, flip back to first side

A

B

1

Solution: Double Storage
• If B(...) throws, still have A
• ~A()
• When C comes, flip back to first side

A1 B

Solution: Double Storage
• If B(...) throws, still have A
• ~A()
• When C comes, flip back to first side

B5

Solution: Double Storage
• If B(...) throws, still have A
• ~A()
• When C comes, flip back to first side

B5

C

Solution: boost::variant

1

Solution: boost::variant

B

1

Solution: boost::variant
• First move A to heap. (If it fails, we are still ok.)
• If B(...) succeeds, delete A pointer.
• If B(...) fails, move A pointer to storage.

(Can’t fail.)

A

B

1

A*

Solution: boost::variant
• First move A to heap. (If it fails, we are still ok.)
• If B(...) succeeds, delete A pointer.
• If B(...) fails, move A pointer to storage.

(Can’t fail.)

A B2

A*

Solution: boost::variant
• First move A to heap. (If it fails, we are still ok.)
• If B(...) succeeds, delete A pointer.
• If B(...) fails, move A pointer to storage.

(Can’t fail.)

B2

Solution: boost::variant
• First move A to heap. (If it fails, we are still ok.)
• If B(...) succeeds, delete A pointer.
• If B(...) fails, move A pointer to storage.

(Can’t fail.)

A2

A*

Solution: boost::variant
• First move A to heap. (If it fails, we are still ok.)
• If B(...) succeeds, delete A pointer.
• If B(...) fails, move A pointer to storage.

(Can’t fail.)

A2

A*

Solution: boost::variant
• First move A to heap. (If it fails, we are still ok.)
• If B(...) succeeds, delete A pointer.
• If B(...) fails, move A pointer to storage.

(Can’t fail.)

A
A*

4

Solution: std::variant

A1

Solution: std::variant

A

B

1

Solution: std::variant
• ~A(), set counter to 0
• Now B(...) throws...
• Now we are “empty”.
• valueless_by_exception() reports true
• visiting is an error until new value provided!B

0

Solution: std::variant
• ~A(), set counter to 0
• Now B(...) throws...
• Now we are “empty”.
• valueless_by_exception() reports true
• visiting is an error until new value provided!

0

Solution: std::variant
• ~A(), set counter to 0
• Now B(...) throws...
• Now we are “empty”.
• valueless_by_exception() reports true
• visiting is an error until new value provided!

0

Tradeoffs

•No wasted memory
•No empty state
•Strong exception-safety, rollback semantics
•No dynamic allocations, backup copies

Because of C++ language rules,
we can’t have everything we want.

Solution: strict_variant

A1

Solution: strict_variant

A

B

1

Solution: strict_variant
• If B(B&&) can’t throw, great, do the obvious.
• If B(B&&) can throw, B always lives on heap.
• Construct B on heap. If it fails, didn’t touch A.
• ~A(), then move B* to storage. Can’t fail.

A

B

1

Solution: strict_variant
• If B(B&&) can’t throw, great, do the obvious.
• If B(B&&) can throw, B always lives on heap.
• Construct B on heap. If it fails, didn’t touch A.
• ~A(), then move B* to storage. Can’t fail.

A

B

1

Solution: strict_variant
• If B(B&&) can’t throw, great, do the obvious.
• If B(B&&) can throw, B always lives on heap.
• Construct B on heap. If it fails, didn’t touch A.
• ~A(), then move B* to storage. Can’t fail.

A1

B

B*

Solution: strict_variant
• If B(B&&) can’t throw, great, do the obvious.
• If B(B&&) can throw, B always lives on heap.
• Construct B on heap. If it fails, didn’t touch A.
• ~A(), then move B* to storage. Can’t fail.

B

2
B*

strict_variant design
High level design: Reducing to a simpler problem.

strict_variant design

1. Make a “simple” variant which assumes members
are nothrow moveable. (This is easy!)

2. Then, to make a general variant, stick anything that
throws in a recursive_wrapper and use the
simple code. (Pointers can always be moved!)

High level design: Reducing to a simpler problem.

strict_variant design

1. Make a “simple” variant which assumes members
are nothrow moveable. (This is easy!)

2. Then, to make a general variant, stick anything that
throws in a recursive_wrapper and use the
simple code. (Pointers can always be moved!)

High level design: Reducing to a simpler problem.

template <typename T>
struct wrap_if_throwing_move {
using type =

typename std::conditional<
std::is_nothrow_move_constructible<T>::value,
T,
recursive_wrapper<T>

>::type;
};

template <typename T>
using wrap_if_throwing_move_t = typename wrap_if_throwing_move<T>::type;

template <typename... Ts>
using variant = simple_variant<wrap_if_throwing_move_t<Ts>...>;

“Step 2”, the reduction, fits here on the screen.

Why use strict_variant
instead of boost::variant?

•boost::variant supports even C++98
•This means, it has to basically work even if we
can’t check noexcept status of operations.
This greatly limits design options.
•strict_variant targets C++11
This allows an, IMO, simpler and better strategy.

Empty
State

Exception
Safety

Backup
Copies

Number
of states

double storage no yes no 2n

std::variant yes no no n+1

boost::variant no yes yes 2n

strict_variant no yes no n

Other features
•boost::variant and std::variant
sometimes do annoying things

•strict_variant uses SFINAE to prevent
many “evil” standard conversions here.

std::variant<int, std::string> v;
v = true; // Compiles! Because of bool -> int :(

std::variant<bool, std::string> u;
u = "The future is now!"; // Selects bool, not std::string! :(

THANK YOU

THANK YOU
http://chrisbeck.co

http://github.com/cbeck88/

